Annual Drinking Water Quality Report #### PONTOON BEACH PWD #### IL1195300 Annual Water Quality Report for the period of January 1 to December 31, 2015 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The source of drinking water used by PONTOON BEACH PWD is Purchased Surface Water For more information regarding this report contact: | Name | Terry Kreher_ | | |-------|---------------|-------------| | Phone | 618-931-2856_ | | Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. ## Source of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over indicate that water poses a health risk. More the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, Some people may be more vulnerable to which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be haturally-occurring or be the result of oil and gas production and mining activities. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. contaminants drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http:// www.epa.gov/safewater/lead. ## Source Water Information | Source Water Name | | Type of Water | Report Status | Location | | |-----------------------------------|-------------------|---------------|---------------|------------|--| | CC 01-METER-100 FT W/SARA ON N | FF IL1195030 TP02 | SW | | PONTOON RD | | | CC 02-METER-NW COR OF INT PONTOON | FF IL1195030 TP02 | SW | | RD/RTE 111 | | #### Source Water Assessment We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. PBPWD meetings are held at 7:oopm on the 1st Wednesday of every month at 3959 Pontoon Rd, Granite City, II, 62040. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by the Pontoon Beach Public Water District office our hours are M-F 7:00am - 3:30pm or call our water operator at 618-931-2856. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. Source of Water: IL AMERICAN-GRANITE CITY Illinois EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems, hence, the reason for mandatory treatment for all surface water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection. Within the Illinois portion of the Mississippi River Watershed, which is illustrated in Figure 3, many commodities, including manufactured goods, petrochemicals, and pesticides are transported along the river system. The production, storage, and transportation of these commodities are a major concern, especially when occurring near surface water intakes. In addition, agricultural runoff within the Illinois portion of the Mississippi River Basin contributes to the susceptibility of the IAWC-Granite City intakes. With high flow rates and long distances of travel on the Mississippi River, critical areas can be extensive. The critical area for the IAWC-Granite City intake was determined using data from a joint U. S. Environmental Protection Agency/U. S. Geological Survey project. This project used a computer modeling program (SPARROW) to determine travel times on major rivers in the United States. Accidental spills of hazardous materials into navigable waterways are a major concern because of their frequency in the United States in recent years. Illinois has access to 1,116 miles of inland waterway that can handle commercial barge traffic. These include the Upper Mississippi River, Illinois River Waterway, and the Ohio River. Along these waterways are numerous facilities that load and unload hazardous materials. Analysis of reported spills indicate that between 1974 and 1989, 794 accidental spills of hazardous materials occurred along Illinois waterways. Approximately 92% of these spills occurred along the Mississippi and/or the Illinois River. Figure 2 shows the critical area of concern (Zone 1) for the IAWC-Granite City surface water intake. Spills occurring in this critical area will travel to the intake in five hours or less, making contingency planning and spill reporting a major concern in this watershed. Information concerning spill response planning on the Mississippi River may be found at the U. S. EPA website www.epa.gov/region5/oil, and additional data can also be downloaded at the U. S. Geological Survey's FTP site ftp://ftp.umesc.er.usgs.gov/pub/gis data/oil spill. # Lead and Copper ## finitions: tion Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. ion Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th
Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|--------------------|-----------------|-------|-----------|---| | Copper | 07/23/2014 | 1.3 | 1.3 | 0.232 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Lead | 07/23/2014 | 0 | 15 | 1 | 0 | ppb | N | Corrosion of household plumbing systems; Erosion of natural deposits. | ## Water Quality Test Results | Maximum Contaminant Level Goal or MCLG: | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | |--|--| | Maximum Contaminant Level or MCL: | The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | Maximum residual disinfectant level goa or MRDLG: | l The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | $\label{eq:maximum} \mbox{Maximum residual disinfectant level or } \mbox{MRDL:}$ | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Definitions: | The following tables contain scientific terms and measures, some of which may require explanation. | | ppb: | micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. | not applicable. na: Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. ppm: # Regulated Contaminants | Disinfectants and
Disinfection
By-Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--|--------------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|--| | Chloramines | 12/31/2015 | 2.4 | 1.3 - 3.2 | MRDLG = 4 | MRDL = 4 | ppm | N | Water additive used to control microbes. | | Haloacetic Acids
(HAA5)* | 2015 | 25 | 16.8 - 26.7 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2015 | 44 | 19.7 - 59 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. |